
A Fast Incremental Dynamic Controllability Algorithm
John Stedl and Brian Williams

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

32 Vassar St. Room 32-G275, Cambridge, MA 02139
stedl@mit.edu, williams@mit.edu

Abstract
In most real-world planning and scheduling problems, the
plan will contain activities of uncertain duration whose
precise timing is observed rather than controlled by the
agent. In many cases, in order to satisfy the temporal
constraints imposed by the plan, the agent must dynamically
adapt the schedule of the plan in response to these uncertain
observations. Previous work has introduced a polynomial-
time dynamic controllability (DC) algorithm, which
reformulates the temporal constraints of the plan into a
dispatchable form, which is amenable for efficient dynamic
execution.

In this paper we introduce a novel, fast Incremental DC
algorithm (Fast-IDC) that (1) very efficiently maintains the
dispatchability of a partially controllable plan when the
subset of the constraints change and (2) efficiently
reformulates previously unprocessed, partially controllable
plans for dynamic execution. This new Fast-IDC algorithm
has been implemented in C++ and shown to run in O(N3)
time when reformulating unprocessed plans.

Introduction
In most real-world planning and scheduling problems, the
timing of some of the events will be controlled by the
agent; while others will be controlled by nature. For
example, a Mars rover is capable of controlling when it
starts driving to a rock; however, its precise arrival time is
determined by environmental factors.

In order to be confident that the agent will successfully
execute a plan that contains activities of uncertain duration,
it is insufficient to merely guarantee that there exists a
feasible schedule. Instead, the agent must ensure there is a
strategy to consistently schedule the controllable events for
all possible outcomes of the uncertain durations. The
problem of determining if a viable execution strategy exists
was first formally addressed by [Vidal 1996, Vidal and
Fargier 1999]. This work has identified three primary
levels of controllability: Strong, Dynamic and Weak.
Controllability refers to the ability to “control” the
consistency of the schedule, despite the uncertainty in the
plan.

In this paper we are concerned with dynamic
controllability, in which agent adapts the schedule of the
plan based on the uncertain durations that are observed at
execution time. Informally, a plan is dynamically
controllable if there is a successful execution strategy that
assigns execution times to the controllable events, which

only depends on past outcomes and satisfies the timing
constraints in the plan for all possible execution times of
uncontrollable events. Furthermore, a plan is dispatchable
if there is a means to efficiently schedule a dynamically
controllable plan.

[Morris 2001] introduced a polynomial time dynamic
controllability (DC) algorithm to reformulate a partially
controllable plan into a dispatchable plan. In this paper we
improve upon this algorithm by introducing a fast
incremental dynamic controllability algorithm (Fast-IDC).
This Fast-IDC provides two key related capabilities. First it
enables an agent to quickly maintain the dispatchability of
the plan when only some of the constraints change.
Second, we show how to efficiently apply this IDC
algorithm in the startup case in order to reformulate
unprocessed plans. This first capability becomes
particularly important when dealing with highly agile
systems, such as unmanned aerial vehicles, where there
may not be enough time to restart the reformulation
processed when some of the constraints change.

[Morris 2001] showed that converting a partially
controllable plan into a dispatchable plan is reduced to
repeatedly applying a set of constraint propagations. These
constraint propagations introduce either simple temporal
constraints or “wait” constraint [Morris 2001]. In this
paper we show how exploit the structure of the plan in
order to efficiently apply these constraint propagations.

Specifically, we introduce and exploit a property called
pseudo-dispatchability, which enables an efficient,
recursive constraint propagation scheme, called
dispatchability-back-propagation (DBP). The sub-term
“back-propagation” refers to the fact that the constraints
only need to be propagated toward the start of the plan.
DBP is efficient because (1) each constraint only need to
be resolved with a subset of the constraints in the plan (2) it
can operated on a trimmed plan in which redundant
constraints are removed.

When reformulating unprocessed plans, we efficiently
apply DBP by using two techniques. First we remove the
redundant constraints before performing constraint
propagation, which significantly reduces the number of
propagations required. Second, we intelligently initiate the
DBPs such that the algorithm continuously reduces the size
of the problem. Our purely recursive approach removes
the need to perform repeated calls to an O(N3) All-Pairs
Shortest-Path (APSP) algorithm, as required by the DC
algorithm introduced by [Morris 2001].

First we review Simple Temporal Networks (STNs)
Simple Temporal Networks with Uncertainty (STNUs).
Then we describe how to perform DBP on STNs. Next we
extend this DBP framework to STNUs. Then we introduce
our Incremental DC (IDC) algorithm to handle the case
when only one constraint changes. Next we show how to
efficiently apply this IDC algorithm for both unprocessed
plans and when multiple constraints change. Finally, we
present some experimental results of our IDC algorithm.

Background
A Simple Temporal Network with Uncertainty [Vidal and
Fargier 1999] is an extension of a STN [Dechter 1991] that
distinguishes between controllable and uncontrollable
events. A STNU is a directed graph, consisting of a set of
nodes, representing timepoints, and a set of edges, called
links, constraining the duration between the timepoints.
The links fall into two categories: contingent links and
requirement links. A contingent link models an
uncontrollable process whose uncertain duration, ω , may
last any duration between the specified lower and upper
bounds. A requirement link simply specifies a constraint on
the duration between two timepoints. All contingent links
terminate on a contingent timepoint whose timing is
controlled by nature. All other timepoints are called
requirement timepoints and are controlled by the agent.

Definition (STNU [Vidal 1999]): A STNU is a 5-tuple <N,
E, l, u, C>, where N is a set of timepoints, E is a set of
edges and l : E  ℜ ∪ {-∞} and u : E  ℜ ∪ {+∞} are
functions mapping the edges to lower and upper bound
temporal constraints. The STNU also contains C, which is
a subset of the edges that specify the contingent links, the
others being requirement links. We assume 0 < l(e) < u(e)
for each contingent link

To support efficient inference, a STNU is mapped to an
equivalent distance graph [Dechter 1991], called a Distance
Graph with Uncertainty (DGU), where each link of the
STNU, containing both lower and upper bounds, is
converted into a pair DGU edges, containing only an upper
bound constraint. In the DGU, the distinction between a
contingent and a requirement edge is maintained. For
example consider the triangular STNU and associated
DGU shown in Figure 1.

Similar to an STN, a STNU is consistent only if its
associated DGU contains no negative cycles [Dechter
1991]. This can be efficiently checked by applying the
Bellman-Ford SSSP algorithm [CLR 1990] on the DGU.
However consistency does not imply dynamic
controllability.

In order for the STNU to be dynamically controllable,
each uncontrollable duration, ωi, must be free to finish any
time between [li,ui], as specified by the contingent link, Ci.
The set of all implicit constraints contained in the STNU

can be made
e x p l i c i t b y
computing the
APSP-graph of
the DGU via the Floyd-Warshall algorithm [CLR 1990].

If temporal constraints of the plan imply strictly tighter
bounds on an uncontrollable duration, then that
uncontrollable duration is squeezed [Morris 2001] and the
plan is not dynamically controllable. In this case there
exists a situation [Vidal 1999] where the outcome of the
uncontrollable duration may result in an inconsistency. A
STNU is pseudo-controllable [Morris 2001] if it is both
temporally consistent and none of its uncontrollable
durations are squeezed.

 In this paper we are interested in preparing the STNU
for dynamic execution in which a dispatcher [Morris 2001]
uses the associated DGU to schedule timepoints at
execution time. Even if a STNU is pseudo-controllable,
the uncontrollable durations may be squeezed at execution
time [Morris 2001].

The dynamic controllability (DC) reformulation
algorithm introduced by [Morris 2001] adds additional
constraints, simple temporal constraints and “wait”
constraints, to the plan, in order to enable the dispatcher to
consistently schedule the plan at execution time without
squeezing the uncontrollable durations. In our Fast-IDC
algorithm we apply these tightenings efficiently.

Incremental STN Dispatchability Maintenance
The speed of our Incremental Fast-DC algorithm depends
on a technique called dispatchability-back-propagation
(DBP). In this section we introduce the DBP rules for
STNs. In the next section we extend these rules for STNUs.
 In order to address real-time scheduling issues,
[Muscettola 1998] showed that any consistent STN can be
converted into an equivalent dispatchable distance graph,
which can be dynamically scheduled using a locally
propagating dispatching algorithm [Muscettola 1998].
Furthermore, [Muscettola 1998] showed that the dispatcher
can run efficiently if the redundant constraints are removed
from the plan, forming a minimal dispatchable graph.

The dispatching algorithm schedules and executes the
timepoints at the same time. The dispatcher works by
maintaining a list of enabled timepoints along with a
feasible execution widow, Wx ∈ [lbx,ubx], for each
timepoint X. When the dispatcher executes a timepoint, the
dispatcher both updates the list of enabled timepoints and
propagates this execution time to update the execution
window of unexecuted timepoints. Specifically, when a
timepoint A is executed, upper-bound updates are
propagated via all outgoing, non-negative edges AB and
lower-bound updates are propagated via all incoming
negative edges, CA. The dispatching algorithm is free to
schedule timepoint X anytime within X’s execution
window, as long X is enabled. A timepoint X is enabled if
all timepoints that must precede X have been executed.

Figure 1 (a) Triangular STNU and (b) DGU

B

C

A

v
-u

y

-x

q
-p

B

C

A

[u,v]

[x,y]

[p,q]

(a) (b)

contingent

executable

requirement

contingent

Act1

In order to develop the DBP rules for STN’s we exploit
the dispatchability of the plan. For a dispatchable graph,
the dispatcher is able to guarantee that it can make a
consistent assignment to all future timepoints, as long as
each scheduling decision is consistent with the past.
Therefore, in order to maintain the dispatchability of the
plan when a constraint is modified, we only need to make
sure that the change is consistent (resolved) with the past;
the dispatcher will ensure that this constraint change is
consistent (resolved) with the future at execution time.

Specifically, when an edge X changes, it only needs to
be resolved with the set of edges that may cause an
inconsistency with the time window update propagated by
edge X at execution time. These set of edges are called
threats.

We call the process of ensuring an edge change is
consistent with the past, Dispatchability Back-Propagation
(DBP).
Lemma (STN-DBP) Given a dispatchable STN with
associated distance graph G,
(i) Consider any tightening (or addition) of an edge AB
with d(AB) = y, where y>0 and A≠B; for all edges BC with
d(BC)= u, where u <= 0, we can deduce a new constraint
AC with d(AC) = y + u.
(ii) Consider any tightening (or addition) of an edge AB
with d(AB)= x, where x <= 0 and A≠B; for all edges CB
with d(CB)= v, where v >= 0, we can deduce a new
constraint CA with d(CA) = x+v.

Proof: (i) During execution, a negative edge AB
propagates an upper bound to B of ubB = T(A) + d(AB). A
non-negative edge CB propagates a lower bound to B of
lbB = T(C) - d(BC). At execution time, changing AB will
be consistent if ubB >= lbB for any C, or T(A) + d(AB) >=
T(C) - d(BC), which implies T(A) - T(C) < d(AB) + d(BC).
Adding an edge CA of d(AB) + d(BC) to G encodes this
constraint. Similar reasoning applies for case (ii) when a
negative edge changes.

Recursively applying rules (i) and (ii), when an edge
changes in a dispatchable distance graph, will either expose
a direct inconsistency or result in a dispatchable graph.
This back-propagation technique only requires a subset of
the edges to be resolved with the change, instead of all the
edges, which would happen if we were to re-compute the
APSP-graph every time an edge changed. Specifically

For example, consider the series of STN-DBPs required
when the edge DC, shown in Figure 2a, is changed in the
originally dispatchable graph. This change must be back-
propagated through the threats, CB, and BD. The modified
edges, BC and CC, resulting from this back-propagation,
are shown in Figure 2-b. The self-loop CC is consistent and
has no threats; however, the edge BC must be back-
propagated through its threats, CB and CA. The results of
this back-propagation modifies edges BB and BA, as
shown in Figure 2-c. Now BA is threatened by AB. The
next round of back-propagation results in a dispatchable
graph, as shown in Figure 2-d. In this example, only 5

propagations were required; recomputing the APSP-graph
using the Floyd-Warshall APSP algorithm would have
required 125 propagations.

In order to apply DBP to distance graphs with
uncertainty (DGUs), we introduce the idea of pseudo-
dispatchability. If we ignore the distinction between
contingent and requirement edges in the DGU, then the
DGU is effectively converted into distance graph (DG). If
this associated DG is dispatchable, then we say the DGU
pseudo-d i spa tchab le . If a DGU is both pseudo-
dispatchable and pseudo-controllable, then its
dispatchability is only threatened by possible squeezing of
the uncontrollable durations at execution time. In the next
section we show how to exploit the pseudo-dispatchability
of a plan in order to efficiently reformulate the plan in
order to prevent this squeezing from occurring.
Furthermore, the pseudo-dispatchability of the DGU is
maintained by recursively applying the STN-DBP rules.

We also introduce the term pseudo-minimal dispatchable
graph (PMDG), which is a DGU that is both pseudo-
dispatchable and contains the fewest number of edges. The
PMDG can be computed by applying either the “slow”
STN reformulation algorithm introduced by [Muscettola
1998], or the “fast” STN reformulation algorithm
introduced by [Tsamardinos 1998], to the DGU (ignoring
the distinction between contingent and requirement edges).

Defining the DBP Rules for STNUs
In this section we unify reduction and regression rules
introduced by [Morris 2001] with the STN Dispatchability
Back Propagations (STN-DBP) rules described in the
previous section, to form the DBP rules for STNUs. In the
next section we use these rules to design our Fast
Incremental DC (Fast-IDC) algorithm.

First we review the reduction rules introduced by
[Morris 2001] which prevent the uncontrollable durations
from being squeezed at execution time. Consider the
triangular STNU and associated DGU shown in Figure 1.
Assume that the STNU is both pseudo-controllable and in
an APSP form.
Precede Case: u > 0: The precede reduction prevents the
propagations from either CB or BC, from squeezing the
contingent link AB.

Definition (Precede Reduction [Morris 2001]) If u > 0,
tighten AC to x-u, and edge CA to v-y.

Modified: DC

A
10

B
0

C
10

D
-5-5

10

E
10

-2
8

-6

A 10 B
-1

C 10 D
-5-5

10

E
10

-2

5

-6

(a)

(d)

5

0

Threats to DC: CD, BD

A 10 B
0

C 10 D
-5-5

10

E10

-2
5

-6(b)

5

Modified: BC, CC

A
10

B
-1

C
10

D
-5

-5

10

E
10

-2

5

-6

5

0Threats to BC: CB, CA

Modified: BB, BA

Threats to BA: AB

(c)

9

Modified:AA Threats: none

Figure 2 STN Back-Propagation Example

Unordered Case: v ≥ 0 and u ≤ 0: The unordered
reduction prevents propagations through edge CB from
squeezing the contingent link AB, when C executes first,
yet allows B to propagate an upper bound through BC,
when B executes first.

A conditional edge, introduced by [Morris 2001], must
be added to the DGU in order to handle this case. This is
slightly different from the “wait” constraint defined by
[Morris 2001]; however, provides the same functionality.
We call a DGU containing a set of conditional constraints,
a Conditional Distance Graph with Uncertainty (CDGU). A
conditional edge CA of <B,-t> specifies that A must wait at
least t time units after A executes or until B executes,
which ever is sooner. Note that the form of a conditional
edge is similar to a negative requirement edge.

Definition (Unordered Reduction [Morris 2001]) If v ≥ 0
and u ≤ 0, apply a conditional constraint CA of <B, v-y>.

In some cases the conditional edge is unconditional. The
unconditional unordered reduction describes when to
convert the conditional edge into a requirement edge.

Definition (Unconditional Unordered Reduction
[Morris 2001]) Given a STNU with contingent link AB ∈
[x,y], and associated CDGU with a conditional constraint
CA of <B,-t>, if x > t, then convert the conditional
constraint CA into a requirement CA with distance –x.

In order to prevent a conditional constraint from being
violated at execution time, it must be regressed through the
CDGU.

Lemma (Regression [Morris 2001]): Given a conditional
constraint CA of <B,t>, where -t is less than or equal to
the upper bound of contingent link AB. Then (in a schedule
resulting from a dynamic strategy):

i.) If there is a requirement edge DC with distance w,
where w ≥ 0 and D ≠ B, we can deduce a conditional
constraint DA of <w+t, B>.

ii.) If t < 0 and if there is a contingent link DC with
bounds [x,y] and B ≠ C, then we can deduce a conditional
constraint DA of <x+t, B>.

Given that the plan is pseudo-controllable and pseudo-
dispatchable, in order to maintain the dispatchability of the
CDGU when a constraint changes, we only need iteratively
apply all rules (STN-DBP, regression, and reductions) that
pertain to that constraint. Table 1 summarizes the DBP
rules used in our Fast-IDC algorithm. This unified set of
rules enables each type of propagation to be interleaved.
This differs from the technique used by [Morris 2001] that
requires an APSP computation to perform the requirement
edge propagations. In the next section we describe the
process of iteratively applying the DBP for STNUs to
create an incremental dynamic controllability algorithm.

Applying the DBP rules for STNUs
In this section we use the DBP rules in order to define an
incremental algorithm for maintaining the dispatchability
of a plan when one or more of the constraints change. In
the next section we extend this algorithm to reformulate
unprocessed plans into a dispatchable form.

The function BACK-PROPAGATE, shown in Figure 3,
maintains the dispatchability of a CDGU, G, when an edge
(u,v) changes. The function BACK-PROPAGATE
recursively applies the DBP rules shown in Table 1, until
either it detects a direct inconsistency or until no more
propagations are required.

The BACK-PROPAGATE algorithm first checks if the
edge (u,v) is a loop, (i.e. starts and ends on the same
timepoint). If it is a positive loop, no more propagations are
required and the algorithm returns true. If the edge is a
negative loop, then an inconsistency is detected and the
algorithm returns false.

Next the algorithm resolves all possible threats to (u,v)
by applying the DBP rules in order to generate a candidate
update edge (p,q). Two special conditions are considered if
the candidate is a conditional edge. First, if the conditional
edge is dominated by an existing requirement constraint,
then the algorithm returns true. Second, the algorithm
converts the conditional edge into a requirement edge as
required by the unconditional unordered reduction.

Next the algorithm resolves the candidate edge (p,q)
with G by tightening or adding the corresponding edge as
necessary. If this resolution modifies a constraint in G (i.e.
is not dominated by an existing edge (p,q)), the algorithm
checks if this tightening squeezes an uncontrollable

If This Changes: Must Back-Propagated Through (Threats) Updates Rule:
 [-] Req. edge BA 1. any [+] Req. edge CB

2. any Ctg Link CB
[+/-] Req. edge CA
[+/-] Req. edge CA

STN(ii)
PR

 [+] Req. edge AB 1. any [-] Req. edge BC
2. any Ctg. Link CB *
3. any [-] Cond. edge BC of <-t,D>, where D ≠ A

[+/-] Req. edge AC
[+/-] Cond. edge AC**
[+/-] Cond. edge AC**

STN(i)
PR/UR
REG(i)

 [-] Cond. edge BA of <-t,D> 1. any [+] Req. edge CB, where C ≠ D
2. any Ctg. Link CB , where B ≠ D

[+/-] Cond. edge CA**
[+/-] Cond. edge CA**

REG(i)
 REG(ii)

Table 1 STNU-DBP Rules

* same for both precede or unordered cases , ** convert any conditional edges into requirement edges as required by the UUR.
STN: STN-DBP, UR: Unordered Reduction, UUR: Unconditional Unordered Reduction, Ctg: contingent, Req.: requirement
PR: Precede Reduction, REG: regression

duration, then recursively calls BACK-PROPAGATE to

resolve the change. After recursively resolving all threats,
the algorithm returns true.

The function BACK-PROPAGATE is our Incremental
DC maintenance algorithm when a single constraint
changes. In order to handle multiple constraint changes we
need to apply the BACK-PROPAGATE function to all
edges that change.

In the next section we present the Incremental DC
Reformulation algorithm that is capable of reformulating
unprocessed plans.

Fast Incremental Dynamic Controllability
Algorithm
In this section we describe our Fast Incremental-DC
Reformulation algorithm (Fast-IDC) which builds upon the
BACK-PROPAGATE algorithm presented in the previous
section. The Fast-IDC algorithm efficiently reformulates
unprocessed plans. We will use the example presented in
Figure 4A to describe this algorithm.

The pseudo-code for the Fast-IDC algorithm is shown in
Figure 5. If the STNU is dynamically controllable, then the
Fast-IDC returns a minimal dispatchable CDGU, otherwise
it returns NIL.

First the Fast-IDC algorithm converts the STNU into a
CDGU, then computes the pseudo minimal dispatchable
graph (PMDG) using the “slow” STN Reformulation
Algorithm introduced by [Muscettola 1998]. If an
inconsistency was detected, the algorithm returns NIL.
The minimal pseudo-dispatchable graph for our example is
shown in Figure 7-B. This PMDG is both pseudo-
dispatchable and contains the fewest number of edges.

The CDGU is only dynamically controllable if it is
pseudo-controllable [Morris 2001]. Lines 3 checks if the
contingent edges were squeezed during the process of

converting the CDGU into a minimal pseudo-dispatchable
graph. In our example, all contingent edges remain
unchanged; therefore, the CDGU is pseudo-controllable.

Recall that our goal is to reformulate the graph to ensure
that the plan can be dynamically executed. This
reformulation is done by multiple calls the function
BACK-PROPAGATE. The BACK-PROPAGATE
function needs to be applied to any edge that may squeeze
an uncontrollable duration. Each initial call of BACK-
PROPAGATE causes a series of other edge updates.
However, they will only update edges closer to the start of
the plan. In order to reduce the amount of redundant work,
we initiate the back-propagations near the end of the plan
first. In order to organize the back-propagations, we need to
create a list of contingent timepoints ordered from
timepoints that are executed near the end of the plan, to
timepoints that are executed near the beginning of the plan.
The contingent timepoints are ordered based on their
Single-Destination Shortest-Path (SDSP) distance, sdsp(x).
Specifically, the contingent timepoints are ordered from
lowest to highest SDSP distances. The SDSP distances are
computed in Line 4, and the contingent timepoints are
ordered in Q in Line 5. In our example, the two contingent
timepoints C and H have SDSP distances of -3 and -12
respectively. Therefore, H comes before timepoint C in the
ordered list.

Next the Fast-DC algorithm initiates a series of back-
propagations by calling the function BACK-
PROPAGATE-INIT. This function initiates the back-
propagation by applying all back-propagation rules to
ensure that the uncontrollable duration associated with the
contingent timepoint v is never squeezed during execution.
Recall the contingent duration can only be squeezed by

function BACK-PROPAGATE(G,u,v)
1 if IS-POS-LOOP(u, v) return TRUE
2 if IS-NEG-LOOP(u, v) return FALSE
3 for each threat (x,y) to edge (u,v)
4 apply DBP rules to derive a new candidate edge (p,q)
5 if (p,q) is conditional
6 if dominated by a Req. edge (p,q) return TRUE
7 convert (p,q) to Req. edge as required by UUR
8 end if
9 resolve the edge (p,q) with G
10 if G is modified
11 if G is squeezed return FALSE
11 if ¬BACK-PROPAGATE(G,p,q) return FALSE
12 end
13 end for
14 return TRUE

Figure 3 Pseudo-Code for Back-Propagate

C

D 5

7B
5

A

0

G 20
H

E

F

1

1

10
-3

-3

0

0

0 -10
1 1-2

-2
35

sdsp(C) = -3

sdsp(H) = -12

(B)

C

D
5

7
B

5

A

0

G 20
H

E

F

1

1

10
-3

-3

0

0

0 -10
1 1

-2

-2
-11

0

<C,-6>

(C)

C

D
5

7
B

5

A G 20
H

E

F

1

1

10
-3

-3

0

0

0 -10
1 1-11 <C,-6>

(D)

C

D 5

7
B

5

A

10

G 20 H

E

F

1

1

1

34

0

-3

-3

0

0

0 -10

-13

(A)

0

contingent

executable

requirement

contingent

conditional

Figure 4 Fast-IDC Example.

incoming positive edges or outgoing negative edges to the
contingent timepoint. Lines 1-3 of this initiation function
call BACK- PROPAGATE for all incoming positive edges
into the contingent timepoint v and Lines 4-7 calls BACK-
PROPAGATE for all outgoing negative edges from v.

Consider the series of back-propagations the Fast-DC
algorithm uses to reformulate the CDGU between 7-B and
7-C. The CDGU does not contain threats that may violate
contingent timepoint H, so no back-propagations are
required. The contingent timepoint C, is threatened by the
incoming positive edge EC. The edge EC is back-
propagated through BC, resulting in a new conditional
edge EB of <C,-6>. This contingent edge is then back-
propagated through DE which modifies the requirement
edge DB to -1. This negative requirement edge is then
back-propagated through edge BD resulting in the edge BB
of distance 4. This thread of back-propagation terminates
here because of a positive self-loop.

The contingent timepoint C is also threatened by the
outgoing negative edge CD of length -2. This negative
requirement edge CD is back-propagated through BC,
which sets BD = 1. This positive requirement edge is then
back-propagated through the negative edge DB, resulting
in modifying the self-looping edge BB to 0. This thread of
back-propagation is then terminated. The resulting
dispatchable CDGU is shown Figure 4C. The back-

propagation did not introduce an inconsistency; therefore,
the original STNU is dynamically controllable.

The (optional) last step of the Fast-DC algorithm trims
the dominated (redundant) edges from the CDGU. This is
done by calling the basic STN reformulation algorithm.
The resulting graph is a minimal dispatchable CDGU
which can be executed by the dispatching algorithm
introduced by [Morris 2001]. For example, the minimal
dispatchable CDGU for the sample group plan is shown
Figure 4D.

In this section, we presented an efficient algorithm to
reformulate an STNU into a dispatchable CDGU.

Run Time Complexity of the FAST-IDC
Algorithm
In this section describes some experimental results for our
Fast-IDC algorithm. The FAST-IDC algorithm was
implemented in C++ and run on a set of randomly
generated STNUs that contained between 10 to 50
activities (20-140 timepoints) interconnected by a set of
random (yet locally consistent) requirement edges. In our
trials, 50% of the activities were uncontrollable.

Figure 8 shows the experimental run time of the Fast-DC
and DC algorithm introduced by [Morris 2001] for
successful reformulations, plotted against the number of
activities in the STNU. The tests were run on a 1 GHz
Pentium IV processor with 512 MB of RAM. The data
label DBP represents the time the algorithm spent in the
BACK-PROPAGATE function.

The most interesting result is the speed at which the
algorithm performed the back-propagations. Recall when
maintaining the dispatchability of our plan we only need to
call the BACK-PROPAGATE function. Thus maintaining
the dispatchability is very efficient.

Our test also shows that our Fast-DC algorithm
experimentally runs in O(N3) when reformulation
unprocessed plan. This is not surprising if you consider the
overall structure of the Fast-IDC algorithm as follows.
1. Compute PMDG Θ(N3)
2. Check for Pseudo-Controllability O(E)
3. Run SSSP O(NE)
4. Back-Propagation polynomial
5. (optional) Re-compute PMDG Θ(N3)

Our Fast-DC algorithm is dominated by the “slow” STN
reformulation algorithm in step 1. Our FAST-DC algorithm
can be directly improved by using the “fast” STN
reformulation algorithm introduced by [Tsarmardinos
1998], which runs in O(NE + N2 log N) time.

function FAST-DC(Γ)
1 G ← STNU_TO_CDGU(Γ)
2 if ¬COMPUTE_PMDG(G) return NIL
3 if ¬ IS_PSEUDO_CONTROLLABLE (G) return NIL
4 Compute Bellman_Ford_SDSP(start(G), G)
5 Q ← ordered list of Ctg. T.P. according to the SDSP distances
6 while(¬Q.IS-EMPTY())
7 n  Q.POP_FRONT()
8 if ¬ BACK_PROPAGATE_INIT(G, n) , return NIL
9 end while
10 (optional) COMPUTE_MPDG(G)
11 return G

Figure 5 Pseudo-code for FAST-DC

function BACK-PROPAGATE-INIT(G,v)
1 for all pos. edges (u,v) into the Ctg. timepoint v
2 if ¬BACK_PROPAGATE(G,u,v) return FALSE
3 end for
4 for all outgoing negative edges (v,u) from the ctg timepoint v
5 if ¬BACK_PROPAGATE(G,v,u) return FALSE
6 end for
7 return TRUE

Figure 6 Pseudo-code for BACK-PROPAGATE-INIT

Future Work
Currently our incremental dispatchability algorithm is

only capable of maintaining the dispatchability when the
values of the constraints are tightened. We are currently
investigating improved algorithm to handle the case when
new activities are added or removed from the plan or when
the contingent activities timebounds are expanded rather
than tightened.

References
[CLR 1990] T.H. Cormen, C.E. Leiserson and R.L.
Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.
[Dechter 1991] R. Dechter, I. Meiri, and J. Pearl.
Temporal constraint networks. Artificial Intelligence,
49:61-95, May 1991.
[Morris 2001] P. Morris, N. Muscettola, and T, Vidal.
Dynamic Control of plans with temporal uncertainty. In:
Proc. IJCAI-01.
[Muscettola 1998] N. Muscettola, P. Morris, and I.
Tsamardinos. Reformulating temporal plans for efficient
execution. In Proc. Of Sixth Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR ’98), 1998.
[Tsamardinos 1998] I. Tsarmardinos, N. Muscettola, and
P.Morris. Fast transformation of temporal plans for
efficient execution. AAAI-98, 1998.
[Vidal 1996] T. Vidal and M. Ghallab. Dealing with
uncertain durations in temporal constraint networks
dedicated to planning. In Proc. ECAI-1996.
[Vidal 1999] T. Vidal and H. Fargier. Handling
contingency in temporal constraint networks: from
consistencies to controllabilities. Journal of Experimental
& Theoretical Artificial Intelligence, 11:23-45, 1999

Run Time vs Number of Activities
(50% controllable)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

Number Activities

R
un

-T
im

e
(s

ec
on

ds
) DC1

FAST-DC
DBP

Figure 8 Run Time Complexity

